Math 112 final homework. Due 11/28

For the things of this world cannot be made known without a knowledge of mathematics.

- Francis Bacon

- (1) Review what we did in class this week.
- (2) Do the following exercises from pages 180-186 in the course notes
 - 6.16
 - 6.19 parts a, b only
 - 6.30
 - 6.31
 - 7.3 part a [note: we will cover this on Wednesday. If you miss wednesday's class, read section 7.2]
 - 7.4
- (3) Show that $1243 + 1985^2 4827 + 4$ does not equal $4839 + 753^3 56(81)$ by finding some n so that they are not congruent mod n.
- (4) Do exercise 3 on the encryption reading.
- (5) Recall $\mathbb{Z} \times \mathbb{Z}$ arithmetic as we did in class on Monday.
 - a) List all the elements of $U(\mathbb{Z} \times \mathbb{Z})$
 - b) Write a multiplication table for $U(\mathbb{Z} \times \mathbb{Z})$ and explain why this is a group. What is the order of the group $U(\mathbb{Z} \times \mathbb{Z})$?
 - c) Is $U(\mathbb{Z} \times \mathbb{Z})$ cyclic? If so, which elements are generators? If not, why?
 - d) For each of the elements, find the order of that element in the group $U(\mathbb{Z} \times \mathbb{Z})$.
- (6) a) Show that $1000 \equiv 1 \pmod{9}$. What about 10000000? Explain why it is true that any power of 10 is congruent to 1 mod 9.
 - b) Find the residue class of these numbers mod 9: 2000, 50, 700000000.
 - c) By writing a number as a sum of powers of 10 (e.g. 756 = 700 + 50 + 6), find the residue class of 1995 (mod 9), and then of 2859571003957 (mod 9).
 - d) Now we're going to do this for negative numbers: Show that -1000 is congruent to -1 (mod 9), and use this and a similar procedure as above to show that -2345 is congruent to -5. What is the residue class of -5?